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Abstract: The paper is concerned with fuzzy real numbers and Felbin-type fuzzy
inner product spaces. At first, we study fuzzy 2-inner product and discuss a few
basic results of fuzzy inner product and fuzzy 2-inner product. The existence of
fuzzy 2-inner product is proved with the help of an example. We introduce the
notion of Felbin- type fuzzy weak n-inner product, which is a generalized concept
of fuzzy n-inner product. Finally, we construct an n-iterated fuzzy 2-inner product
and prove that it is a fuzzy weak n-inner product, also furnish an example of a
3-iterated fuzzy 2-inner product which is not a fuzzy 3-inner product.
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1. Introduction
A. Misiak [12], in 1989 generalized the idea of 2-inner product to n-inner prod-

uct. Recently Minculete and Păltănea initiated the concept of weak n-inner product
[9], with several applications. A classification of results related to the theory of
2-inner product and n-inner product can be found in [2], [3], [4], [5], [7], [12]. The
notion of fuzzy norm on a vector space was first introduced by Katsaras, in 1984
[10]. In 1992 [6], Felbin introduced an alternative definition of fuzzy norm and dis-
cussed standard results of general normed linear spaces in Felbin-type fuzzy normed
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space. A. Hasankhani et al., [8] introduced the concept of Felbin-type fuzzy inner
product space and studied various results of general inner product space in fuzzy
inner product spaces. Misiak [12] demonstrated representation of n-inner product
in terms of the basic inner product. In 2021, Minculete and Păltănea [11] developed
the idea of the n-iterated 2-inner product, proved that it satisfies the properties
of weak n-inner product, and showed its representation in terms of the standard
n-inner product. They also explored several applications of the n-iterated 2-inner
product. This motivates the investigation of the existence of a fuzzy n-iterated 2-
inner product in the sense of a fuzzy weak n-inner product. Furthermore, it raises
the problem of describing the relationship between the fuzzy n-iterated 2-inner
product and the fuzzy n-inner product. The notion of fuzzy n-inner product is
defined in [9] as follows:

Let n be a natural number greater than 1 and X be a vector space over R
and dim(X) ≥ n. A fuzzy n-inner product on X is a mapping ⟨·, ·|·, . . . , ·⟩ :
X ×X × . . .×X︸ ︷︷ ︸

n+1

→ F (R) such that for all vectors x, y, z, x2, . . . , xn ∈ X, r ∈ R

and α ∈ (0, 1], we have:

A1) ⟨x, x |x2, . . . , xn⟩ ⪰ 0̃ and ⟨x, x |x2, . . . , xn⟩ = 0̃ if and only if x, x2, . . . , xn are
linearly dependent;

A2) ⟨x, y |x2, . . . , xn⟩ = ⟨y, x|x2, . . . , xn⟩;

A3) ⟨x, y|x2, . . . , xn⟩ is invariant under any permutation of x2, . . . , xn;

A4) ⟨x, x |x2, x3, . . . , xn⟩ = ⟨x2, x2 |x, x3, . . . , xn⟩;

A5) ⟨rx, y |x2, . . . , xn⟩ = r̃ ⊗ ⟨x, y |x2, . . . , xn⟩ for all r ∈ R;

A6) ⟨x+ y, z |x2, . . . , xn⟩ = ⟨x, z |x2, . . . , xn⟩ ⊕ ⟨y, z |x2, . . . , xn⟩;

A7) infα∈(0,1] ⟨x, x |x2, . . . , xn⟩−α > 0, if x, x2, . . . , xn are linearly independent.

Then the vector space X equipped with this fuzzy n-inner product ⟨·, ·|·, . . . , ·⟩ is
called a fuzzy n-inner product space.

Here we have mentioned below few basic results related to the theory of fuzzy
n-inner product proved in [9]:

1. Let (X, ⟨·, ·|·, . . . , ·⟩) be a fuzzy n-inner product space. Then, for all α ∈ (0, 1],
⟨·, ·|·, . . . , ·⟩−α and ⟨·, ·|·, . . . , ·⟩+α satisfy all the properties of n-inner product
except homogeneity.
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2. In a fuzzy n-inner product space X, for all x, x2, . . . , xn ∈ X and real β,

⟨x, x | β x2, x3, . . . , xn⟩ = β̃2 ⊗ ⟨x, x |x2, x3, . . . , xn⟩.

3. In a fuzzy n-inner product space, if the vectors x, x2, . . . , xn are linearly de-
pendent, then ⟨x, y |x2, . . . , xn⟩ = 0̃.

4. For any x, y, x2, . . . , xn in a fuzzy n-inner product space X, we have
⟨x2, y |x2, . . . , xn⟩ = ⟨x, x2 |x2, . . . , xn⟩ = 0̃. In particular,
⟨⃗0, y |xn, . . . , x2⟩ = ⟨x, 0⃗ |xn, . . . , x2⟩ = ⟨x, y | 0⃗, . . . , x2⟩ = 0̃.

This article pertains to the construction of an n-iterated fuzzy 2-inner product
that satisfies all the conditions of a fuzzy weak n-inner product.

2. Preliminaries

In this section, basic definitions and notations are given.

Definition 2.1. [8] A mapping η : R → [0, 1] is called a fuzzy real number with
α-level set [η]α = {t : η(t) ≥ α}, if it satisfies the following conditions:

1. there exist t0 ∈ R such that η(t0) = 1.

2. for each α ∈ (0, 1], there exist real numbers −∞ < η−α ≤ η+α < +∞ such that
the α-level set [η]α is equal to the closed interval [η−α , η

+
α ].

The set of all fuzzy real numbers (fuzzy intervals) is denoted by F (R). If η ∈ F (R)
and η(t) = 0 whenever t < 0, then η is called a non-negative fuzzy real number
and F+(R) denotes the set of all non-negative fuzzy real numbers. The real number
η−α ≥ 0 for all η ∈ F+(R) and α ∈ (0, 1].
Since each r ∈ R can be considered as the fuzzy real number r̃ ∈ F (R) defined by

r̃(t) =

{
1, if t = r

0, if t ̸= r
(2.1)

it follows that R can be embedded in F (R). Also α-level set of r̃ is given by [r̃]α =
[r, r], 0 < α ≤ 1.

Lemma 2.2. [8] Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ]. Then for all
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α ∈ (0, 1],

[η ⊕ γ]α = [η−α + γ−α , η
+
α + γ+α ],

[η ⊖ γ]α = [η−α − γ+α , η
+
α − γ−α ],

[η ⊗ γ]α = [η−α γ
−
α , η

+
α γ

+
α ],∀η, γ ∈ F+(R),

[1̃⊘ η]α =
[ 1

η+α
,
1

η−α

]
, ∀η−α > 0,

[|η|]α = [max(0, η−α ,−η+α ),max(|η−α |, |η+α |)].

Definition 2.3. [8] Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ], for all

α ∈ (0, 1]. Define a partial ordering by η ⪯ γ in F (R) if and only if η−α ≤ γ−α and
η+α ≤ γ+α , for all α ∈ (0, 1].

Remark 2.4. [8] Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ], for all

α ∈ (0, 1]. By above definition, if η−α = γ−α and η+α = γ+α , then η = γ and vice
versa.

Definition 2.5. [8] For a non-negative fuzzy real number η we define
√
η = γ

where [γ]α = [
√
η−α ,

√
η+α ], α ∈ (0, 1].

Lemma 2.6. [8] Let η ∈ F+(R) and γ ∈ F (R). Then

1. (
√
η)2 = η,

2. γ ⪯ |γ|.

Lemma 2.7. For any real number r ∈ R, |̃r| = |r̃| =
{
r̃, if r ≥ 0;
⊖r̃, if r < 0.

Proof. For r ≥ 0, [|̃r|]α = [|r|, |r|] = [r, r] and [|r̃|]α = [max(0, r,−r),max(|r|, |r|)] =
[r, r]. For r < 0, let r = −p, where p > 0, [|̃r|]α = [|̃ − p|]α = [p̃]α = [p, p] =
[−r,−r] = [⊖r̃]α and [|r̃|]α = [|−̃p|]α = [max(0,−p,−(−p)),max(| − p|, | − p|)] =
[p, p] = [−r,−r] = [⊖r̃]α.
3. Fuzzy Inner Product

Definition 3.1. [8] Let X be a vector space over R. A real-valued fuzzy inner prod-
uct on X is a mapping ⟨·, ·⟩ : X ×X → F (R) such that for all vectors x, y, z ∈ X
and r ∈ R, we have

B1) ⟨x+ y, z⟩ = ⟨x, z⟩ ⊕ ⟨y, z⟩,

B2) ⟨rx, y⟩ = r̃ ⊗ ⟨x, y⟩,
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B3) ⟨x, y⟩ = ⟨y, x⟩,

B4) ⟨x, x⟩ ⪰ 0̃,

B5) inf0<α≤1⟨x, x⟩−α > 0, if x ̸= 0,

B6) ⟨x, x⟩ = 0̃ if and only if x = 0.

The vector space X with a real-valued fuzzy inner product is called a real fuzzy
inner product space. We write [⟨·, ·⟩]α = [⟨·, ·⟩−α , ⟨·, ·⟩+α ].
Lemma 3.2. [1] In a fuzzy inner product space (X, ⟨·, ·⟩), for vectors x, y and for
each α ∈ (0, 1], we have

|⟨x, y⟩|+α ≤
√

⟨x, x⟩−α
√
⟨y, y⟩−α . (3.1)

Hence, it holds that

|⟨x, y⟩| ⪯
√

⟨x, x⟩ ⊗
√

⟨y, y⟩. (3.2)

Corollary 3.3. Let (X, ⟨·, ·⟩) be a fuzzy inner product space. Then for any positive
fuzzy number ⟨·, ·⟩ and vectors x, y, for each α ∈ (0, 1], we have

⟨x, y⟩+α ≤
√
⟨x, x⟩−α

√
⟨y, y⟩−α . (3.3)

Hence, it holds that

⟨x, y⟩ ⪯
√

⟨x, x⟩ ⊗
√
⟨y, y⟩ or, ⟨x, y⟩2 ⪯ ⟨x, x⟩ ⊗ ⟨y, y⟩. (3.4)

Also, ⟨x, y⟩2 = ⟨x, x⟩ ⊗ ⟨y, y⟩ if the vectors x and y are linearly dependent.
Proof. By Lemma 2.2 and Lemma 3.2, we have

⟨x, y⟩+α ≤ |⟨x, y⟩|+α =max(|⟨x, y⟩−α |, |⟨x, y⟩+α |)
=max(⟨x, y⟩−α , ⟨x, y⟩+α ) ≤

√
⟨x, x⟩−α

√
⟨y, y⟩−α .

Again if x, y are linearly dependent ⇒ y = kx (for some k ∈ R) ⇒ ⟨x, y⟩ =√
⟨x, x⟩ ⊗

√
⟨y, y⟩.

Corollary 3.4. For any positive fuzzy number in a fuzzy inner product space, if
⟨x, y⟩+α =

√
⟨x, x⟩−α

√
⟨y, y⟩−α , then vectors x and y are linearly dependent.

Proof. As discussed in Theorem 2, [1], for y ̸= 0,

(∥x∥−α )2 −
(|⟨x,y⟩|+α )2

(∥y∥−α )2
= (∥x∥−α )2 −

(|v|+α )2

(∥y∥−α )2
= ⟨x+ ay, x+ ay⟩−α ,
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where a =


|v|+α

(∥y∥−α )2
, if |v|+α = |v−α |

−|v|+α
(∥y∥−α )2

, if |v|+α = |v+α |
Again, |⟨x, y⟩|+α = max (|⟨x, y⟩−α |, |⟨x, y⟩+α |) = ⟨x, y⟩+α .
Thus

⟨x, y⟩+α =
√

⟨x, x⟩−α
√

⟨y, y⟩−α

⇒ (∥x∥−α )2 −
(|⟨x, y⟩|+α )2

(∥y∥−α )2
= 0

⇒ ⟨x+ ay, x+ ay⟩−α = 0

⇒ x+ ay = 0.

Corollary 3.5. If ⟨·, ·⟩ is a fuzzy inner product space, then ∥x + y∥ = ∥x∥ ⊕ ∥y∥
if and only if ⟨x, y⟩ = ∥x∥ ⊗ ∥y∥.
Proof.[

∥x+ y∥
]
α
=

[
∥x∥ ⊕ ∥y∥

]
α
⇔∥x+ y∥−α = ∥x∥−α + ∥y∥−α

and ∥x+ y∥+α = ∥x∥+α + ∥y∥+α
⇔⟨x, y⟩−α = ∥x∥−α∥y∥−α and ⟨x, y⟩+α = ∥x∥+α∥y∥+α
⇔

[
⟨x, y⟩

]
α
=

[
∥x∥ ⊗ ∥y∥

]
α
.

4. The Notion of Fuzzy 2-inner Product

Definition 4.1. Let n be a natural number greater than 1 and X be a vector space
over R and dim(X) ≥ n. A fuzzy 2-inner product on X is a mapping ⟨·, ·|·⟩ :
X ×X ×X → F (R) such that for all vectors x, x′, y, z ∈ X, r ∈ R and α ∈ (0, 1],
we have:

C1) ⟨x+ x′, y |z⟩ = ⟨x, y |z⟩ ⊕ ⟨x′, y |z⟩;

C2) ⟨rx, y |z⟩ = r̃ ⊗ ⟨x, y |z⟩ for all r ∈ R;

C3) ⟨x, y |z⟩ = ⟨y, x|z⟩;

C4) ⟨x, x |z⟩ = ⟨z, z|x⟩;

C5) ⟨x, x |z⟩ ⪰ 0̃;

C6) ⟨x, x |z⟩ = 0̃ if and only if x, z are linearly dependent;

C7) infα∈(0,1] ⟨x, x |z⟩−α > 0, if x, z are linearly independent.
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Then the vector space X equipped with this fuzzy 2-inner product ⟨·, ·|·⟩ is called a
fuzzy 2-inner product space.

Remark 4.2.

1. If x and z are linearly independent, then from condition C6), we have ⟨x, x |z⟩ ≠
0̃. Thus either ⟨x, x|z⟩−α = 0, ⟨x, x|z⟩+α > 0 or ⟨x, x|z⟩−α > 0, ⟨x, x|z⟩+α > 0.
So in both the cases ⟨x, x|z⟩+α ̸= 0.

2. For positive fuzzy numbers, the statement ⟨x, x |z⟩ = 0̃ if and only if x and
z are linearly dependent is equivalent to the statement ⟨x, x |z⟩+α = 0 if and
only if x and z are linearly dependent.

Lemma 4.3. Let X be a fuzzy 2-inner product space, then

1. ⟨x+ ry, x+ ry | z⟩−α
=

{
⟨x, x | z⟩−α + 2r⟨x, y | z⟩−α + r2⟨y, y | z⟩−α , if r ≥ 0 ;
⟨x, x | z⟩−α + 2r⟨x, y | z⟩+α + r2⟨y, y | z⟩−α , if r < 0.

2. ⟨x+ ry, x+ ry | z⟩+α
=

{
⟨x, x | z⟩+α + 2r⟨x, y | z⟩+α + r2⟨y, y | z⟩+α , if r ≥ 0;
⟨x, x | z⟩+α + 2r⟨x, y | z⟩−α + r2⟨y, y | z⟩+α , if r < 0.

for all x, y, z ∈ X and α ∈ (0, 1].
In the Theorem 4.4, a fuzzy number is explicitly formulated and demonstrated

to possess the characteristics of a fuzzy 2-inner product. This outcome simultane-
ously establishes the existence of a fuzzy 2-inner product.

Theorem 4.4. Let (X, ⟨·, ·⟩) be a fuzzy inner product space. Then for any pos-
itive fuzzy number ⟨·, ·⟩, the mapping ⟨·, ·|·⟩ : X × X × X → F (R) defined by

⟨x, y|z⟩ :=
∣∣∣∣⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

∣∣∣∣ = (⟨x, y⟩⊗⟨z, z⟩)⊖ (⟨x, z⟩⊗⟨z, y⟩) is a fuzzy number and

satisfies all the properties from C1) to C6). And ⟨·, ·|·⟩ is a fuzzy 2-inner product,
if ⟨·, ·|·⟩−α ̸= 0.

Proof. [⟨x, y|z⟩]α := [⟨x, y|z⟩−α , ⟨x, y|z⟩+α ] =
[∣∣∣∣⟨x, y⟩−α ⟨x, z⟩+α
⟨z, y⟩+α ⟨z, z⟩−α

∣∣∣∣ , ∣∣∣∣⟨x, y⟩+α ⟨x, z⟩−α
⟨z, y⟩−α ⟨z, z⟩+α

∣∣∣∣]
C1) ⟨x+x′, y|z⟩ = ⟨x+x′, y⟩⊗⟨z, z⟩⊖⟨x+x′, z⟩⊗⟨z, y⟩ =

(
⟨x, y⟩⊗⟨z, z⟩⊖⟨x, z⟩⊗

⟨z, y⟩
)
⊕

(
⟨x′, y⟩ ⊗ ⟨z, z⟩ ⊖ ⟨x′, z⟩ ⊗ ⟨z, y⟩

)
= ⟨x, y|z⟩ ⊕ ⟨x′, y|z⟩.

C2) For any r ∈ R, ⟨rx, y|z⟩ = ⟨rx, y⟩ ⊗ ⟨z, z⟩ ⊖ ⟨rx, z⟩ ⊗ ⟨z, y⟩ = r̃ ⊗ ⟨x, y|z⟩.

C3) Since ⟨·, ·⟩ is a fuzzy inner product, so ⟨x, y|z⟩ = ⟨y, x|z⟩.
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C4) ⟨x, x|z⟩−α = ⟨x, x⟩−α ⟨z, z⟩−α − ⟨x, z⟩+α ⟨z, x⟩+α = ⟨z, z⟩−α ⟨x, x⟩−α − ⟨z, x⟩+α ⟨x, z⟩+α =
⟨z, z|x⟩−α . Similarly, ⟨x, x|z⟩+α = ⟨z, z|x⟩+α and so ⟨x, x|z⟩ = ⟨z, z|x⟩.

C5) By Lemma 2.2 and Lemma 3.2, we have max(|⟨x, z⟩−α |, |⟨x, z⟩+α |) = |⟨x, z⟩|+α ≤√
⟨x, x⟩−α

√
⟨z, z⟩−α . Since ⟨·, ·⟩ is a positive fuzzy number, so

⟨x, z⟩−2
α ≤ ⟨x, z⟩+2

α = |⟨x, z⟩|+2
α ≤ ⟨x, x⟩−α ⟨z, z⟩−α

≤ ⟨x, x⟩+α ⟨z, z⟩+α . (4.1)

Thus ⟨x, x|z⟩−α ≥ 0 and ⟨x, x|z⟩+α ≥ 0.

C6) If ⟨x, x|z⟩ = 0̃ then ⟨x, x|z⟩−α = 0 and ⟨x, x|z⟩+α = 0. ⟨x, x|z⟩−α = 0 ⇒
⟨x, z⟩+2

α = ⟨x, x⟩−α ⟨z, z⟩−α . Thus by Corollary 3.4, x and z are linearly depen-
dent. Conversely, if x and z are linearly dependent, by Corollary 3.3, we get
⟨x, z⟩+2

α = ⟨x, x⟩+α ⟨z, z⟩+α and ⟨x, z⟩−2
α = ⟨x, x⟩−α ⟨z, z⟩−α . Using (4.1), we have

⟨x, z⟩−2
α = ⟨x, x⟩+α ⟨z, z⟩+α and ⟨x, z⟩+2

α = ⟨x, x⟩−α ⟨z, z⟩−α and so ⟨x, x|z⟩ = 0̃.

C7) If x, z are linearly independent and ⟨x, x|z⟩−α ̸= 0, then infα∈(0,1]⟨x, x|z⟩−α > 0
because α-cut of fuzzy numbers is a closed interval.

5. Fuzzy Weak n-inner Product Space
The basic properties of Felbin-type fuzzy n-inner product spaces and Cauchy-

Schwarz inequality on fuzzy n-inner product spaces are discussed in [9].
Within this context, we formulate an n-iterated fuzzy 2-inner product that ad-

heres to the properties outlined in Definition 4.1.

Definition 5.1. Let n be a natural number greater than 1 and X be a vector
space over R and dim(X) ≥ n. A fuzzy weak n-inner product on X is a mapping
⟨·, ·|·, . . . , ·⟩ : X ×X × . . .×X︸ ︷︷ ︸

n+1

→ F (R) such that for all vectors x, y, z, x2, . . . , xn ∈

X, r ∈ R and α ∈ (0, 1], we have:

D1) ⟨x, x |xn, . . . , x2⟩ ⪰ 0̃ and ⟨x, x |xn, . . . , x2⟩ = 0̃ if and only if x, x2, . . . , xn are
linearly dependent;

D2) ⟨x, y |xn, . . . , x2⟩ = ⟨y, x|xn, . . . , x2⟩;

D3) ⟨x, x |xn, . . . , x2⟩ = ⟨xn, xn |x, xn−1, . . . , x2⟩;

D4) ⟨rx, y |xn, . . . , x2⟩ = r̃ ⊗ ⟨x, y |xn, . . . , x2⟩ for all r ∈ R;

D5) ⟨x+ y, z |xn, . . . , x2⟩ = ⟨x, z |xn, . . . , x2⟩ ⊕ ⟨y, z |xn, . . . , x2⟩;
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D6) infα∈(0,1] ⟨x, x |xn, . . . , x2⟩−α > 0, if x, xn, . . . , x2 are linearly independent.

Then the vector space X equipped with this fuzzy weak n-inner product ⟨·, ·|·, . . . , ·⟩
is called a fuzzy weak n-inner product space.

Remark 5.2. For n = 2 a fuzzy weak n-inner product is equivalent to fuzzy n-
inner product. By definition it is very obvious that fuzzy n-inner product is a fuzzy
weak n-inner product. However, it is important to note that the converse is not
true in general, as exemplified in Example 5.12. The construction of a fuzzy weak
n-inner product relies on the properties inherent in a fuzzy n-inner product, with
the exception of property A3).

Theorem 5.3. Let (X, ⟨·, ·|·, . . . , ·⟩) be a fuzzy weak n-inner product space. Then,
for all α ∈ (0, 1], ⟨·, ·|·, . . . , ·⟩−α and ⟨·, ·|·, . . . , ·⟩+α satisfy all the properties of weak
n-inner product except the property homogeneity.
The proof of Theorem 5.3 can be established employing a similar method demon-
strated in [9] for fuzzy n-inner products. However, in this discussion, we present
an alternative approach by introducing the quotient map ψ.

Lemma 5.4. [11] Let X be a weak n-inner product space and x, x2, . . . , xn ∈ X. If
x, x2, . . . , xn are linearly dependent, then ⟨x, y|xn, . . . , x2⟩ = 0.
Note that:

[⟨rx, y |xn, . . . , x2⟩−α ,⟨rx, y |xn, . . . , x2⟩+α ]
= [⟨rx, y |xn, . . . , x2⟩]α
= [r̃ ⊗ ⟨x, y |xn, . . . , x2⟩]α

=

{
[r⟨x, y |xn, . . . , x2⟩−α , r⟨x, y |xn, . . . , x2⟩+α ] if r ≥ 0

[r⟨x, y |xn, . . . , x2⟩+α , r⟨x, y |xn, . . . , x2⟩−α ] if r < 0.

Lemma 5.5 is proven using a similar method as described in [9].

Lemma 5.5. Let (X, ⟨·, ·|·, . . . , ·⟩) be a fuzzy weak n-inner product space and
x, x2, x3, . . . , xn be linearly dependent vectors. Then ⟨x, y|xn, . . . , x2⟩ = 0̃.
Proof. We consider two cases.

Case 1. y, x2, x3, . . . , xn are linearly independent. Consider the vector u = αx−βy,
where α = ⟨y, y|xn, . . . , x2⟩−α and β = ⟨x, y|xn, . . . , x2⟩+α . We have

0 ≤⟨u, u|xn, . . . , x2⟩−α
= ⟨αx− βy, αx− βy|xn, . . . , x2⟩−α
=α2⟨x, x|xn, . . . , x2⟩−α − 2αβ⟨x, y|xn, . . . , x2⟩+α + β2⟨y, y|xn, . . . , x2⟩−α
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= ⟨y, y|xn, . . . , x2⟩−α
[
⟨y, y|xn, . . . , x2⟩−α ⟨x, x|xn, . . . , x2⟩−α

− (⟨x, y|xn, . . . , x2⟩+α )2
]

= − ⟨y, y|xn, . . . , x2⟩−α (⟨x, y|xn, . . . , x2⟩+α )2

Since y, x2, x3, . . . , xn are linearly independent it follows that
⟨y, y|xn, . . . , x2⟩−α > 0 and thus ⟨x, y|xn, . . . , x2⟩+α = 0.

Case 2. y, x2, x3, . . . , xn are linearly dependent. Then also x+ y, x2, x3, . . . , xn are
linearly dependent. Because ⟨x, x|xn, . . . , x2⟩+α = 0, ⟨y, y|xn, . . . , x2⟩+α = 0
and ⟨x+ y, x+ y|xn, . . . , x2⟩+α = 0, from the relation

⟨x+ y, x+ y|xn, . . . , x2⟩+α = ⟨x, x|xn, . . . , x2⟩+α + 2⟨x, y|xn, . . . , x2⟩+α + ⟨y, y|xn, . . . , x2⟩+α ,

we get ⟨x, y|xn, . . . , x2⟩+α = 0.
Similarly we can show that ⟨x, y|xn, . . . , x2⟩−α = 0.

Remark 5.6. In a fuzzy weak n-inner product space,
⟨⃗0, y |xn, . . . , x2⟩ = ⟨x, 0⃗ |xn, . . . , x2⟩ = ⟨x, y | 0⃗, . . . , x2⟩ = 0̃.

Let (X, ⟨·, ·|·, . . . , ·⟩) be a fuzzy weak n-inner product space over the field of real
numbers R. Consider the set Y = span{x2, x3, . . . , xn}, where x2, x3, . . . , xn are
linearly independent and let X/Y = {x̂ = Y + x : x ∈ X} be the quotient space.
Let ψ : X/Y ×X/Y → F (R), be a function defined by ψ(x̂, ŷ) = ⟨x, y|xn, . . . , x2⟩.
Consider the vectors x, x′, y, y′ ∈ X such that (x̂′, ŷ′) = (x̂, ŷ), that is x′ − x ∈ Y
and y′ − y ∈ Y. Then

ψ(x̂′, ŷ′) = ⟨x′, y′|xn, . . . , x2⟩ = ⟨x′ − x+ x, y′ − y + y|xn, . . . , x2⟩
= ⟨x′ − x, y′ − y|xn, . . . , x2⟩ ⊕ ⟨x′ − x, y|xn, . . . , x2⟩
⊕ ⟨x, y′ − y|xn, . . . , x2⟩ ⊕ ⟨x, y|xn, . . . , x2⟩

= 0̃⊕ 0̃⊕ 0̃⊕ ⟨x, y|xn, . . . , x2⟩(using Lemma 5.5)

=ψ(x̂, ŷ),

which shows that the function ψ is well-defined.
Again, if ⟨·, ·|·, . . . , ·⟩ be a fuzzy weak n-inner product, then ψ satisfies all the

properties of basic fuzzy inner product as mentioned below:

1. ψ(x̂, x̂) = ⟨x, x|xn, . . . , x2⟩ ⪰ 0̃ and ψ(x̂, x̂) = 0̃ ⇔ ⟨x, x|xn, . . . , x2⟩ = 0̃ ⇔
x, x2, x3, . . . , xn are linearly dependent ⇔ x ∈ Y ⇔ x̂ = Y + x = Y = 0̂,

2. ψ(x̂, ŷ) = ⟨x, y|xn, . . . , x2⟩ = ⟨y, x|xn, . . . , x2⟩ = ψ(ŷ, x̂),
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3. For all r ∈ R, ψ(rx̂, y) = ψ(r̂x, y) = ⟨rx, y|xn, . . . , x2⟩ = r̃⊗⟨x, y|xn, . . . , x2⟩ =
r̃ ⊗ ψ(x̂, ŷ),

4. ψ(x̂+ ŷ, ẑ) = ψ(x̂+ y, ẑ) = ⟨x+ y, z|xn, . . . , x2⟩,
= ⟨x, z|xn, . . . , x2⟩ ⊕ ⟨y, z|xn, . . . , x2⟩ = ψ(x̂, ẑ)⊕ ψ(ŷ, ẑ),

5. infα∈(0,1] ψ(x̂, x̂)
−
α = infα∈(0,1]⟨x, x|xn, . . . , x2⟩−α > 0.

This shows that ψ is a fuzzy inner product.
Notation: The α-cut of ψ is denoted by [ψ]α = [ψ−, ψ+] = [⟨·, ·|·, . . . , ·⟩−α , ⟨·, ·|·, . . . , ·⟩+α ].

Theorem 5.7. In a fuzzy weak n-inner product space (X, ⟨·, ·|·, . . . , ·⟩), for any
x, y, x2, . . . , xn ∈ X we have

|⟨x, y|xn, . . . , x2⟩|+α ≤
√

⟨x, x|xn, . . . , x2⟩−α
√

⟨y, y|xn, . . . , x2⟩−α .

Proof. Since (X/Y, ψ) is a fuzzy inner product space, therefore by Lemma 3.2 for
all x̂, ŷ ∈ X/Y, we have

|ψ(x̂, ŷ)|+α = max(|ψ−(x̂, ŷ)|, |ψ+(x̂, ŷ)|) ≤
√
ψ−(x̂, x̂)⊗

√
ψ−(ŷ, ŷ)

⇔ |⟨x, y|xn, . . . , x2⟩|+α ≤
√
⟨x, x|xn, . . . , x2⟩−α

√
⟨y, y|xn, . . . , x2⟩−α .

Corollary 5.8. In a fuzzy weak n-inner product space

1. ⟨x, y|xn, . . . , x2⟩ ⪯ |⟨x, y|xn, . . . , x2⟩| ⪯
√
⟨x, x|xn, . . . , x2⟩⊗

√
⟨y, y|xn, . . . , x2⟩.

2. ⟨x, y|xn, . . . , x2⟩ =
√

⟨x, x|xn, . . . , x2⟩ ⊗
√

⟨y, y|xn, . . . , x2⟩ only if x, y, x2, . . . , xn
are linearly dependent.

3. If ⟨x, y|xn, . . . , x2⟩+α =
√

⟨x, x|xn, . . . , x2⟩−α
√
⟨y, y|xn, . . . , x2⟩−α , then vectors

x, y, x2, . . . , xn are linearly dependent.

Proof.

1. The inequality is a direct consequence of Lemma 2.6 and Theorem 5.7.

2. If x, y, x2, . . . , xn are linearly dependent, then x̂, ŷ are linearly dependent,
which implies ψ(x̂, ŷ) =

√
ψ(x̂, x̂)⊗

√
ψ(ŷ, ŷ), (using Corollary 3.3).

Thus ⟨x, y|xn, . . . , x2⟩ =
√
⟨x, x|xn, . . . , x2⟩ ⊗

√
⟨y, y|xn, . . . , x2⟩.

3. ⟨x, y|xn, . . . , x2⟩+α =
√

⟨x, x|xn, . . . , x2⟩−α
√

⟨y, y|xn, . . . , x2⟩−α implies ψ+(x̂, ŷ)

=
√
ψ−(x̂, x̂)⊗

√
ψ−(ŷ, ŷ), which shows that x̂ and ŷ are linearly dependent,

(using Corollary 3.4). Thus x, y, x2, . . . , xn are linearly dependent.
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Remark 5.9. For a fuzzy weak n-inner product ⟨·, ·|·, . . . , ·⟩, using Theorem 5.7
and Lemma 2.2, we also have

⟨x, y|xn, . . . , x2⟩−α ≤ ⟨x, y|xn, . . . , x2⟩+α
≤ |⟨x, y|xn, . . . , x2⟩+α |
≤ |⟨x, y|xn, . . . , x2⟩|+α
≤

√
⟨x, x|xn, . . . , x2⟩−α

√
⟨y, y|xn, . . . , x2⟩−α

≤
√

⟨x, x|xn, . . . , x2⟩+α
√

⟨y, y|xn, . . . , x2⟩+α . (5.1)

If (X, ⟨·, ·|·, . . . , ·⟩) be a fuzzy weak n-inner product space, n ≥ 2, then we can
define a function ∥ · | ·, . . . , ·∥ : X ×X × . . .×X︸ ︷︷ ︸

n

→ F (R) by

∥x|xn, . . . , x2∥ =
√

⟨x, x|xn, . . . , x2⟩ (5.2)

which satisfies the following conditions:

E1) ∥x|xn, . . . , x2∥ ⪰ 0̃, ∥x|xn, . . . , x2∥ = 0̃ if and only if x, x2, . . . , xn are linearly
dependent;

E2) ∥x|xn, . . . , x2∥ = ∥xn|x, xn−1, . . . , x2∥;

E3) ∥rx|xn, . . . , x2∥ = |r̃| ⊗ ∥x|xn, . . . , x2∥ for all r ∈ R;

E4) ∥x+ y|xn, . . . , x2∥ ⪯ ∥x|xn, . . . , x2∥ ⊕ ∥y|xn, . . . , x2∥;

E5) infα∈(0,1] ∥x|x2, . . . , xn∥−α > 0, if x, x2, . . . , xn are linearly independent;

The conditions E1)-E5) follow immediately from the conditions D1)-D6).

Definition 5.10. A fuzzy real valued function ∥ · | ·, . . . , ·∥ satisfying conditions
E1)-E5) is called a fuzzy weak n-norm and (X, ∥ · | ·, . . . , ·∥) is called a fuzzy weak
n-normed space.

Theorem 5.11. If (X, ⟨·, ·⟩) be a fuzzy inner product space, then for x, y, z,
x2, . . . , xn ∈ X, r ∈ R and n ≥ 3, the mapping ⟨·, ·|·, . . . , ·⟩∗ : X ×X × . . .×X︸ ︷︷ ︸

n+1

→

F (R) defined by

⟨x, y|xn, . . . , x2⟩∗ :=
∣∣∣∣ ⟨x, y|xn−1, . . . , x2⟩∗ ⟨x, xn|xn−1, . . . , x2⟩∗
⟨xn, y|xn−1, . . . , x2⟩∗ ⟨xn, xn|xn−1, . . . , x2⟩∗

∣∣∣∣ (5.3)
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satisfies conditions D1)-D5) and ⟨·, ·| ·, . . . , ·⟩∗ is a fuzzy weak n-inner product if
⟨x, x|xn, . . . , x2⟩−∗α ̸= 0.
Note that for n = 2, ⟨x, y|x2⟩∗ = ⟨x, y|x2⟩ as defined in Theorem 4.4, which is
a fuzzy weak 2-inner product. The mapping defined in (5.3) is called n-iterated
fuzzy 2-inner product.
Proof. We prove this proposition by mathematical induction, for n ≥ 2. Clearly,
by Theorem 4.4 the result is true for n = 2.
Induction hypothesis: suppose S(n) : the n-iterated fuzzy 2-inner product defined
in (5.3) satisfies conditions D1)-D6). To prove that S(n+ 1) : the (n+ 1)-iterated
fuzzy 2-inner product also satisfies conditions D1)-D6). The (n+1)-iterated fuzzy
2-inner product is given by

⟨x, y|xn+1, . . . , x2⟩∗ :=
∣∣∣∣ ⟨x, y|xn, . . . , x2⟩∗ ⟨x, xn+1|xn, . . . , x2⟩∗
⟨xn+1, y|xn, . . . , x2⟩∗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

∣∣∣∣ . (5.4)

So by Remark 5.9, we get

⟨x, x|xn+1, . . . , x2⟩−∗α :=

∣∣∣∣ ⟨x, x|xn, . . . , x2⟩−∗α ⟨x, xn+1|xn, . . . , x2⟩+∗α
⟨xn+1, x|xn, . . . , x2⟩+∗α ⟨xn+1, xn+1|xn, . . . , x2⟩−∗α

∣∣∣∣ ≥ 0

(5.5)

and

⟨x, x|xn+1, . . . , x2⟩+∗α :=

∣∣∣∣ ⟨x, x|xn, . . . , x2⟩+∗α ⟨x, xn+1|xn, . . . , x2⟩−∗α
⟨xn+1, x|xn, . . . , x2⟩−∗α ⟨xn+1, xn+1|xn, . . . , x2⟩+∗α

∣∣∣∣ ≥ 0,

(5.6)

this shows that ⟨x, x|xn+1, . . . , x2⟩∗ ⪰ 0̃.
If x, xn+1, . . . , x2 are linearly dependent, then by Corollary 5.8

(⟨x, xn+1|xn, . . . , x2⟩+∗α)
2 = ⟨x, x|xn, . . . , x2⟩+∗α⟨xn+1, xn+1|xn, . . . , x2⟩+∗α

and

(⟨x, xn+1|xn, . . . , x2⟩−∗α)
2 = ⟨x, x|xn, . . . , x2⟩−∗α⟨xn+1, xn+1|xn, . . . , x2⟩−∗α .

Then by Remark 5.9

(⟨x, xn+1|xn, . . . , x2⟩−∗α)
2 = ⟨x, x|xn, . . . , x2⟩+∗α⟨xn+1, xn+1|xn, . . . , x2⟩+∗α

and

(⟨x, xn+1|xn, . . . , x2⟩+∗α)
2 = ⟨x, x|xn, . . . , x2⟩−∗α⟨xn+1, xn+1|xn, . . . , x2⟩−∗α .

This shows that ⟨x, x|xn+1, . . . , x2⟩+∗α = 0 and ⟨x, x|xn+1, . . . , x2⟩−∗α = 0 and so
⟨x, x|xn+1, . . . , x2⟩∗ = 0̃.
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Conversely,

⟨x, x|xn+1, . . . , x2⟩∗ = 0̃ ⇒ ⟨x, x|xn+1, . . . , x2⟩+∗α = 0

⇒ (⟨x, xn+1|xn, . . . , x2⟩−∗α)
2 = ⟨x, x|xn, . . . , x2⟩+∗α⟨xn+1, xn+1|xn, . . . , x2⟩+∗α

⇒ (⟨x, xn+1|xn, . . . , x2⟩+∗α)
2 = ⟨x, x|xn, . . . , x2⟩+∗α⟨xn+1, xn+1|xn, . . . , x2⟩+∗α

(using Remark 5.9)

⇒ x, xn+1, . . . , x2 are linearly dependent.

Condition D1) is completely proved for n+ 1.
Since S(n) is true, so the condition D2) is true for n+ 1.
Proof of condition D3) for n+ 1:

⟨x, x|xn+1, . . . , x2⟩∗ :=
∣∣∣∣ ⟨x, x|xn, . . . , x2⟩∗ ⟨x, xn+1|xn, . . . , x2⟩∗
⟨xn+1, x|xn, . . . , x2⟩∗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

∣∣∣∣
=

∣∣∣∣⟨xn+1, xn+1|xn, . . . , x2⟩∗ ⟨xn+1, x|xn, . . . , x2⟩∗
⟨x, xn+1|xn, . . . , x2⟩∗ ⟨x, x|xn, . . . , x2⟩∗

∣∣∣∣ = ⟨xn+1, xn+1|x, xn, . . . , x2⟩∗.

Proof of condition D4) for n+ 1:

⟨r x, y|xn+1, . . . , x2⟩∗ :=
∣∣∣∣ ⟨r x, y|xn, . . . , x2⟩∗ ⟨r x, xn+1|xn, . . . , x2⟩∗
⟨xn+1, y|xn, . . . , x2⟩∗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

∣∣∣∣
=

∣∣∣∣r̃ ⊗ ⟨x, y|xn, . . . , x2⟩∗ r̃ ⊗ ⟨x, xn+1|xn, . . . , x2⟩∗
⟨xn+1, y|xn, . . . , x2⟩∗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

∣∣∣∣ = r̃ ⊗ ⟨x, y|xn+1, . . . , x2⟩∗.

Proof of condition D5) for n+ 1 :

⟨x+ x′, y|xn+1, . . . , x2⟩∗ =⟨x+ x′, y|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗
⊖ ⟨x+ x′, xn+1|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, y|xn, . . . , x2⟩∗

=

(
⟨x, y|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

⊖ ⟨x, xn+1|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, y|xn, . . . , x2⟩∗
)

⊕
(
⟨x′, y|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, xn+1|xn, . . . , x2⟩∗

⊖ ⟨x′, xn+1|xn, . . . , x2⟩∗ ⊗ ⟨xn+1, y|xn, . . . , x2⟩∗
)

=⟨x, y|xn+1, . . . , x2⟩∗ ⊕ ⟨x′, y|xn+1, . . . , x2⟩∗.

Example 5.12. Define ⟨x, y⟩(t) =
{

1, when t = (x, y);
0, otherwise,



Fuzzy weak n-inner product space 411

where (·, ·) defines the usual inner product and (x, x) > 0. Then [⟨x, y⟩]α =
[(x, y), (x, y)]. It can be verified that ⟨·, ·⟩ is a fuzzy number and a fuzzy inner prod-
uct. Let (·, ·) : R3 × R3 → R be the usual inner product and ⟨·, ·| ·, ·⟩∗ : R3 × R3 ×
R3×R3 → F (R) be the 3-iterated fuzzy 2-inner product with ⟨·, ·| ·, ·⟩−∗α ̸= 0. Then
by Theorem 5.11, ⟨·, ·| ·, ·⟩∗ is a fuzzy weak 3-inner product. But it is not a fuzzy 3-
inner product because there exist vectors for which ⟨x, x|x3, x2⟩∗ ̸= ⟨x2, x2|x3, x⟩∗.
For this choose vectors x = (1, 0, 0), x2 = (2, 1, 2), x3 = (1, 1, 1). As defined in
equation (5.3),

⟨x, x|x3, x2⟩∗ =
∣∣∣∣ ⟨x, x|x2⟩∗ ⟨x, x3|x2⟩∗
⟨x3, x|x2⟩∗ ⟨x3, x3|x2⟩∗

∣∣∣∣
= (⟨x, x|x2⟩∗ ⊗ ⟨x3, x3|x2⟩∗)⊖ (⟨x, x3|x2⟩∗ ⊗ ⟨x3, x|x2⟩∗).

Now, ⟨x, x|x2⟩−∗α =

∣∣∣∣ ⟨x, x⟩−α ⟨x, x2⟩+α
⟨x2, x⟩+α ⟨x2, x2⟩−α

∣∣∣∣ = ∣∣∣∣ (x, x) (x, x2)
(x2, x) (x2, x2)

∣∣∣∣ = ∣∣∣∣1 2
2 9

∣∣∣∣ = 5,

and ⟨x, x|x2⟩+∗α =

∣∣∣∣ ⟨x, x⟩+α ⟨x, x2⟩−α
⟨x2, x⟩−α ⟨x2, x2⟩+α

∣∣∣∣ = ∣∣∣∣ (x, x) (x, x2)
(x2, x) (x2, x2)

∣∣∣∣ = ∣∣∣∣1 2
2 9

∣∣∣∣ = 5.

So [⟨x, x|x2⟩∗]α = [5, 5]. Similarly, we can find out [⟨x3, x3|x2⟩∗]α = [2, 2],
[⟨x, x3|x2⟩∗]α = [−1,−1] = [⟨x3, x|x2⟩∗]α. Therefore,
[⟨x, x|x3, x2⟩∗]α = ([5, 5]⊗ [2, 2])⊖ ([−1,−1]⊗ [−1,−1]) = [9, 9].
Now,

⟨x2, x2|x3, x⟩∗ :=
∣∣∣∣⟨x2, x2|x⟩∗ ⟨x2, x3|x⟩∗
⟨x3, x2|x⟩∗ ⟨x3, x3|x⟩∗

∣∣∣∣
and [⟨x2, x2|x⟩∗]α = [5, 5], [⟨x3, x3|x⟩∗]α = [2, 2], [⟨x2, x3|x⟩∗]α = [3, 3] = [⟨x3, x2|x⟩∗]α.
So [⟨x2, x2|x3, x⟩∗]α = [1, 1].

6. Conclusion
We substantiated the existence of a fuzzy 2-inner product through an illustrative

example and constructed an n-iterated fuzzy 2-inner product, demonstrating its
characterization as a fuzzy weak n-inner product. Furthermore, we provided an
example illustrating a 3-iterated fuzzy 2-inner product that does not conform to
the properties of a fuzzy 3-inner product.

7. Future scope
The structure of the standard fuzzy n-inner product remains an unexplored

aspect. Once the structure of the standard fuzzy n-inner product is established,
one can delve into the study of representing the n-iterated fuzzy 2-inner product
in terms of the standard fuzzy k-inner product, (k ≤ n).
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