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Abstract: The paper is concerned with fuzzy real numbers and Felbin-type fuzzy
inner product spaces. At first, we study fuzzy 2-inner product and discuss a few
basic results of fuzzy inner product and fuzzy 2-inner product. The existence of
fuzzy 2-inner product is proved with the help of an example. We introduce the
notion of Felbin- type fuzzy weak n-inner product, which is a generalized concept
of fuzzy n-inner product. Finally, we construct an n-iterated fuzzy 2-inner product
and prove that it is a fuzzy weak nm-inner product, also furnish an example of a
3-iterated fuzzy 2-inner product which is not a fuzzy 3-inner product.
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1. Introduction

A. Misiak [12], in 1989 generalized the idea of 2-inner product to n-inner prod-
uct. Recently Minculete and Paltanea initiated the concept of weak n-inner product
9], with several applications. A classification of results related to the theory of
2-inner product and n-inner product can be found in [2], [3], [4], [5], [7], [12]. The
notion of fuzzy norm on a vector space was first introduced by Katsaras, in 1984
[10]. In 1992 [6], Felbin introduced an alternative definition of fuzzy norm and dis-
cussed standard results of general normed linear spaces in Felbin-type fuzzy normed
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space. A. Hasankhani et al., [8] introduced the concept of Felbin-type fuzzy inner
product space and studied various results of general inner product space in fuzzy
inner product spaces. Misiak [12] demonstrated representation of n-inner product
in terms of the basic inner product. In 2021, Minculete and Paltanea [11] developed
the idea of the n-iterated 2-inner product, proved that it satisfies the properties
of weak n-inner product, and showed its representation in terms of the standard
n-inner product. They also explored several applications of the n-iterated 2-inner
product. This motivates the investigation of the existence of a fuzzy n-iterated 2-
inner product in the sense of a fuzzy weak n-inner product. Furthermore, it raises
the problem of describing the relationship between the fuzzy n-iterated 2-inner
product and the fuzzy n-inner product. The notion of fuzzy n-inner product is
defined in [9] as follows:

Let n be a natural number greater than 1 and X be a vector space over R

and dim(X) > n. A fuzzy n-inner product on X is a mapping (-, |-,...,-) :
X x X x...xX — F(R) such that for all vectors z,y,z,22,...,2, € X, 7 € R
nt1

and « € (0,1], we have:

Al) (z,x| @9, ..., 2,) = 0and (x,2 |20, ...,z,) = 0 if and only if x, 25, ..., z, are
linearly dependent;

A2) (z,y|xe,...,zn) = (y,x|z2, ..., 20);

A3) (z,y|xs,...,x,) is invariant under any permutation of s, ..., x,;

Ad) (z,x|xo,x3,. .., Tpn) = (T2, Ta| T, 23,. .., Ty);

AB) (rx,yl|xe,...,zn) = T & (x,y|x2,...,z,) for all r € R;

A6) (x+y, 2|z, .., xn) = (x, 2|22y .. x0) B (Y, 2| xa,. .., 20);

A7) infaco) (T, 2 |22, .. ., Tn)y > 0, if 2,29, ..., 2, are linearly independent.
Then the vector space X equipped with this fuzzy n-inner product (-,-|-,...,-) is

called a fuzzy n-inner product space.
Here we have mentioned below few basic results related to the theory of fuzzy
n-inner product proved in [9)]:

1. Let (X, (-,-|,...,+)) be a fuzzy n-inner product space. Then, for all « € (0, 1],
(..., and (-, -], ...,-) satisfy all the properties of n-inner product
except homogeneity.
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2. In a fuzzy n-inner product space X, for all z,zq9,...,2, € X and real f3,
(x,x|Bro,xs,...,xn) = 2R (x, 2|2, 23,...,Tn).
3. In a fuzzy n-inner product space, if the vectors x, xs, ..., z, are linearly de-

pendent, then (z,y|zs,...,x,) = 0.

4. For any x,y, xs,..., 2, in a fuzzy n-inner product space X, we have
(xo,y | X9, ..., xn) = (x, 29| X2, ..., 2,) = 0. In particular,
0,9 n, ..., 22) = (2,0 zp, ..., 22) = {2,y |0,...,29) = 0.

This article pertains to the construction of an n-iterated fuzzy 2-inner product
that satisfies all the conditions of a fuzzy weak n-inner product.
2. Preliminaries

In this section, basic definitions and notations are given.

Definition 2.1. [8] A mapping n : R — [0,1] is called a fuzzy real number with
a-level set [n], = {t : n(t) > a}, if it satisfies the following conditions:

1. there exist ty € R such that n(ty) = 1.

2. for each o € (0,1], there exist real numbers —oo < n, < nt < +o0o such that
the a-level set [n], is equal to the closed interval [, ,n7].

The set of all fuzzy real numbers (fuzzy intervals) is denoted by F(R). If n € F(R)
and 1n(t) = 0 whenever t < 0, then n is called a non-negative fuzzy real number
and F*(R) denotes the set of all non-negative fuzzy real numbers. The real number
n, >0 for alln € FT(R) and o € (0,1].

Since each v € R can be considered as the fuzzy real number 7 € F(R) defined by

o Lt =r
T‘(t)—{Q it (2.1)

it follows that R can be embedded in F(R). Also a-level set of T is given by [Fl, =
rr], 0 <a<1.

Lemma 2.2. [8] Let n,v € F(R) and [n]o = 05,1011, [V]a = 7o, 7S]. Then for all
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a € (0,1],

&Y =a + V010 + V2l

me7)a =M — 7505 — ),

@Yo = 275, n1472], V0,7 € FF(R),
1

[_ _} vn; >0,

1@77

Oé

[1n[la = [max( Mo s =1 )y maz(ng |, 10 ])]-

Definition 2.3. [8] Let n,v € F(R) and [n]o = 05,051, Ve = (5,71, for all
€ (0,1]. Define a partial ordering by n <~ in F(R) if and only if n, <, and
nt <~F, for all a € (0,1].

Remark 2.4. [8] Let n,v € F(R) and [n]o = 05,021, e = 1o, 75, for all
€ (0,1]. By above definition, if n, = ~, and nt = v+, then n = 7 and vice
versa.

Deﬁnition 2.5. [8] For a non-negative fuzzy real number n we define \/n =

where [Y]o = [\/1a,/0E], o € (0,1].

Lemma 2.6. [8] Let n € F*(R) and v € F(R). Then

L (yn)?=n,

2. v =2yl
= T if r > 0;
Lemma 2.7. For any real number r € R, |r| = |F| = { &F, ifr <0,
Proof. Forr >0, [|r|]a = [|7],|7]] = [r,r] and [|F|]a = [max(0, r, —r), max(|r|, |r|)] =
[r,r]. For r < 0, let 7 = —p, where p > 0, [|r[la = [| = lla = [Pla = [p,p] =
[—r, —r] = [©7]s and [|F]]o = [|=plla = [max(0, —p, —(—p)), max(| —p|,| —p|)] =

p,p] = [=r,—r] = [&7]a-
3. Fuzzy Inner Product

Definition 3.1. [8] Let X be a vector space over R. A real-valued fuzzy inner prod-
uct on X is a mapping (-,-) : X x X — F(R) such that for all vectors x,y,z € X
and r € R, we have

B1) (x+y,z) = (x,2) ® (y, 2),

B2) (rz,y) =7 ® (r,y),
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B3) (x,y) = (y, ),

B4) (x,x) = 0,
B5) inf0<a31<x,x>; > 0, Zfl' 7é 0,
B6) (x,x) =0 if and only if x = 0.

The wvector space X with a real-valued fuzzy inner product is called a real fuzzy
inner product space. We write [(-,)]a = [(-, )5, (-, VL]

o

Lemma 3.2. [1] In a fuzzy inner product space (X, -,-)), for vectors x,y and for
each o € (0,1], we have

[z, )]E < Vi{m2) oV (v v)a- (3.1)

Hence, it holds that

[, 9| = Vi{z,2) @ Vy,y). (3-2)

Corollary 3.3. Let (X, (-,-)) be a fuzzy inner product space. Then for any positive
fuzzy number (-, ) and vectors x,y, for each a € (0, 1], we have

(z,y)d < Vw2) /()5 (3.3)

Hence, it holds that

(z,y) 2 V{2, 2) @/ {y,y) or, (z,9)* X (z,2) @ (y,). (3.4)

Also, (x,y)? = (x,x) @ (y,y) if the vectors x and y are linearly dependent.
Proof. By Lemma 2.2 and Lemma 3.2, we have

(@, 9)a < [z y)le =max([(z,y)q ], [z, y)4])

=max((z,y), (z.y)5) < V{2, 2)5 vV {y, v)a-

Again if z,y are linearly dependent = y = kx (for some k € R) = (z,y) =
Vi, ) @ (y.y).

Corollary 3.4. For any positive fuzzy number in a fuzzy inner product space, if
(x,9)F = \/{z,2)7\/{y,y)5, then vectors x and y are linearly dependent.
Proof. As discussed in Theorem 2, [1], for y # 0,

(lell7)? — el — ()52 — LB — (i 4 ay 2+ ay);,
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o e —
where a = (H_y||1|)c|:+>27 .lf |v|j |vj|
Mz vl = vl
Again, |(z, )|, = max (|{(z,y), |, [z, 9)L]) = (z, y)L.

Thus

(@, 9)d = Vi{w2)z vV (. v)a

e (s yld)?
= (lz)13)? = - =0
(lyll5)?
= (r+ay,x+ay), =0
=z +ay=0.

Corollary 3.5. If (-,-) is a fuzzy inner product space, then ||z + y|| = ||z|| @® |ly||
if and only if (z,y) = ||lz|| ® [ly]|.

Proof.
[z +yll], = [lzll @ Iyll], lz+ylz =l + lyla
and ||z +yll5 = [lzll3 + lyla
<@ y)a = Izl lylla and (2, y)5 = llz[1 S lylls
<[z y)], = [llzll @ lyl],-
4. The Notion of Fuzzy 2-inner Product

Definition 4.1. Let n be a natural number greater than 1 and X be a vector space
over R and dim(X) > n. A fuzzy 2-inner product on X is a mapping (-,-|-) :
X x X x X — F(R) such that for all vectors x,z',y,z € X, r € R and o € (0, 1],
we have:

C1) (z+aylz) = (z,yl2) ® (', y2);

C2) (rz,ylz) =7 @ (x,y|2) forallr € R;

{
(
C3) (x,ylz) = (y,|z);
C4) (z,x]z) = (2, 2|2);
C5) (x,x|z) = 0;
C6) (x,x|2) = 0 if and only if x, z are linearly dependent;

C7) infaco) (z, 2 |2), >0, if x, 2 are linearly independent.
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Then the vector space X equipped with this fuzzy 2-inner product {(-,-|-) is called a
fuzzy 2-inner product space.

Remark 4.2.

1. Ifx and z are linearly independent, then from condition C6), we have (z, |z) #
0. Thus either (z,z|z); = 0, (z,z|2)T > 0 or (z,z|z); > 0, (x,z]z)T > 0.
So in both the cases (x,x|z)t # 0.

2. For positive fuzzy numbers, the statement (x,z|2) = 0 if and only if x and
z are linearly dependent is equivalent to the statement (x,z|z)t = 0 if and
only if x and z are linearly dependent.

Lemma 4.3. Let X be a fuzzy 2-inner product space, then

1. (x+ry,x+ry|z),
_ [ mala, + 2r(ry|2), + ¥ y,yl2),, ifr>0;
(@2 4 20y 2)F + Xyl 2., ifr <O

2. (x+ry,x+ryl|z)t
| x| )E 4 20y | 2)E + Xy yl ), ifr > 0;
O\ w2+ 2r(zy|2), + Py, yl2)E, ifr <.

for all x,y,z € X and o € (0,1].

In the Theorem 4.4, a fuzzy number is explicitly formulated and demonstrated
to possess the characteristics of a fuzzy 2-inner product. This outcome simultane-
ously establishes the existence of a fuzzy 2-inner product.

Theorem 4.4. Let (X,(-,-)) be a fuzzy inner product space. Then for any pos-
itie fuzzy number (-,-), the mapping (-,-|) : X x X x X — F(R) defined by
(z,y) (z,2)
(z,9) (2,2)
satisfies all the properties from C1) to C6). And (-,-|) is a fuzzy 2-inner product,
if {-)a # 0.

Proof. [(z,y|z)]a := [(z,y]2)q, (z.yl2)3] = [

(x,y|z) == ‘ = ({(z,y)®(z,2))©((x,2) ®(z,v)) is a fuzzy number and

Cl) (z+2',ylz) = (x+2",y)®(z,z) ©{x+2, 2) =
(z,9)) ® (7', y) ® (2,2) © (2, 2) @ (2,9)) = (z,y]2) & (&, yl2).

C2) For any r € R, (rz,ylz) = (rz,y) ® (z,2) © (rz, 2) @ (z,y) =7 ® (z,y2).

C3) Since (-, -) is a fuzzy inner product, so (z,y|z) = (y, z|z).



404 South FEast Asian J. of Mathematics and Mathematical Sciences

04) <$,JZ|Z>Q_ = <I,J]>;<Z,Z>; - (x,z>§<z,x>a = <Zv z);(x,x>; - <Z,$>2;<$,Z>;'_ =

(z, z|x), . Similarly, (x, z|2)} = (2, z]x)} and so (z,z|z) = (z, z|z).

C5) By Lemma 2.2 and Lemma 3.2, we have max(|(z, 2), |, |{(z, 2)1|) = [(z, 2)|T <

V{x, )7/ (2, 2)5. Since (-,-) is a positive fuzzy number, so

(0, 2)27 < (0, 2082 = {2, 2)[2? < (@,2)5 (2 2)5
< (@,2)} (= 2)7 (4.1)

Thus (z,z|z), > 0 and (z,z|z)} > 0.

C6) If (z,z|z) = 0 then (z,z|z); = 0 and (z,z|2)} = 0. (z,z]2); = 0 =
(x,2)1? = (x,x),(z, 2),. Thus by Corollary 3.4,  and z are linearly depen-
dent. Conversely, if  and z are linearly dependent, by Corollary 3.3, we get
(,2)T? = (z,2)F(2,2)T and (x,2);% = (x,2)(z,2),. Using (4.1), we have
(x,2)7% = (v,2)(2,2)F and (z,2)}% = (v,2)7 (2, 2)5 and so (z,z|z) = 0.

C7) If z, z are linearly independent and (z,x|z); # 0, then inf,ec( 1) (z, 2|2); > 0
because a-cut of fuzzy numbers is a closed interval.

5. Fuzzy Weak n-inner Product Space

The basic properties of Felbin-type fuzzy n-inner product spaces and Cauchy-
Schwarz inequality on fuzzy n-inner product spaces are discussed in [9].

Within this context, we formulate an n-iterated fuzzy 2-inner product that ad-
heres to the properties outlined in Definition 4.1.

Definition 5.1. Let n be a natural number greater than 1 and X be a vector
space over R and dim(X) > n. A fuzzy weak n-inner product on X is a mapping
(o) X x X x ... x X — F(R) such that for all vectors x,y, 2, 2o, ..., 2, €

n+1
X, r€R and o € (0, 1], we have:

D1) (z,x|x,,...,23) = 0 and (x,x|x,,...,25) = 0 if and only if x, s, ... 2, are
linearly dependent;

D2) (z,y|Tn,...,x2) = (y,x|Tp, ..., T2);

D3) (x,x|xp, ..., ko) = (Tp,xp|T, 20 1,...,2T2);

Dj) (re,y|a,,...,x2) =7 @{(x,y|xn,...,x2) for all v € R;
(

D5) (x+y,z|xn,...,20) = (x,2|Tpn,...,x2) B (Y, 2| Tn,...,Ta);
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D6) infocioa) (T, 2| @n, ..., 22)y >0, if &, 2y, ..., 22 are linearly independent.

Then the vector space X equipped with this fuzzy weak n-inner product (-,-|-,...,+)
1s called a fuzzy weak n-inner product space.

Remark 5.2. For n = 2 a fuzzy weak n-inner product is equivalent to fuzzy n-
wnner product. By definition it is very obvious that fuzzy n-inner product is a fuzzy
weak n-inner product. Howewver, it 1s important to note that the converse is not
true in general, as exemplified in Fxample 5.12. The construction of a fuzzy weak
n-inner product relies on the properties inherent in a fuzzy n-inner product, with
the exception of property A3).

Theorem 5.3. Let (X, (-,-|-,...,")) be a fuzzy weak n-inner product space. Then,
for all o € (0,1], (-, ..., and (-, -|-,..., )T satisfy all the properties of weak
n-inner product except the property homogeneity.

The proof of Theorem 5.3 can be established employing a similar method demon-
strated in [9] for fuzzy n-inner products. However, in this discussion, we present

an alternative approach by introducing the quotient map 1.

Lemma 5.4. [11] Let X be a weak n-inner product space and x,xo, ..., x, € X. If
X, T, ..., T, are linearly dependent, then (x,y|x,,..., x2) =0.
Note that:
[(ra,yl @, ... 2o) 0 1T,y | Ty oo 22) ]
= [<7"£L’,y ’ Lpy e - 7$2>]a

= [7: ®<x7y|xna'~~7x2>]a
Iyl o, x) g Yy |, a0) Y] i r >0
[r(z,y | xp, ..., )L r(x,y|xp, ... x0)] i r <O,
Lemma 5.5 is proven using a similar method as described in [9)].

Lemma 5.5. Let (X, (-, -|-,...,)) be a fuzzy weak n-inner product space and
T, X9, T3, ..., T, be linearly dependent vectors. Then (x,y|z,,...,x2) = 0.
Proof. We consider two cases.

Case 1. y,x9, T3, ..., x, are linearly independent. Consider the vector u = ax— By,
where a = (y, y|xn, ..., 22), and f = (x,y|z,, ..., x2)F. We have
0 <(u,ulxy,,...,x2),

— (0 — By, o — Byln, .. 22)7
=a*(z, | Tn, ..., T2), — 208z, Y| Tn, . .., T2) L+ By, ylan, ..., 22),
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=y, y|Tn, ..., T2), [(y, Ylen, .. xe) (@, x|Xn,, ... x0),
- (<ZE, y|xm s 7x2>;t)2}
= — (g, ylan, ..., 22), (2, y|2n, ..., 22) )2
Since y, xs, x3, ..., T, are linearly independent it follows that
(Y, yln, ..., x2), > 0 and thus (z,y|z,, ..., z2)F =
Case 2. vy, x9,23,...,x, are linearly dependent. Then also x + y, xo, x3, ..., x, are
linearly dependent. Because (x, x|z, ...,x2)5 =0, (y,y|zn, ..., x2)F =

and (x +y,x + y|z,, ..., x2) = 0, from the relation

x4y, 2 +y|zn, ..., 220 = (&, 2|20, ..., 22 + 20z, y|z0, .. 2+ (Y, ylon, .., @),
we get (X, y|Tn, ..., xo) L =
Similarly we can show that (z,y|z,,...,z2), = 0.

I:Eemark 5.6. In a fuzzy weak n-inner produgt space,
0,y |zp,...,z2) = (2,0 Tp,...,x2) = (x,y|0,...,29) = 0.

Let (X, (-,+|,...,-)) be a fuzzy weak n-inner product space over the field of real
numbers R. Consider the set Y = span{zsy,x3,...,x,}, where zo,x3,...,x, are
linearly independent and let X/Y = {2 =Y 4+ 2 : x € X} be the quotient space.
Let ¥ : X/Y x X/Y — F(R), be a function defined by ¢(Z,9) = (x,y|zn, ..., x2).
Consider the vectors z,z’,y,y’ € X such that (2/,y') = (2,7), that is 2/ —z € Y
and ¢y —y € Y. Then

Tﬁ(fE',yA/) = <$,,y,|l’n,...,l‘2> :<$,—$+$,y/—y+y|l‘n,...,l’2>
¥ —xy —ylrn, ... x0) & (@ —x, ylr,, ..., x0)

—~

D <Z’, y/ - y|$n7 s 7x2> S <IE, y’xn7 s 71'2)
=000 0® (z, y|z,,...,2s)(using Lemma5.5)
=(2,9),

which shows that the function v is well-defined.
Again, if (-,-|-,...,-) be a fuzzy weak n-inner product, then v satisfies all the

properties of basic fuzzy inner product as mentioned below:

L Y(2,2) = (z,0|T,, ..., 22) = 0 and ¥(2,2) = 0 & (z,2|T,,...,220) = 0 &
T, To9,X3,...,T, are linearly dependent & rxr €Y 2 =Y +x =Y =0,

2' q/)('i‘7:l)) = <x7 y|xn7 AR 7x2> = <y7 x|$n7 A 71'2) = ¢(Q’ i’))
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3. Forallr € R, o(rz,y) = (T, y) = (re,yl|e,, ..., x2) = 7@z, ylr,, ..., 1) =
TR Y(T,9),

4 Y@ +9,2) =@ +y,2) = @+, 2lTn, ..., 22),
=z, 2|Tn, ..., x2) B (Y, 2|Tn, ..., x2) = V(&,2) D Y(7, 2),

5. infaco1 ¥ (2, 2), = infaco(x, |2y, ..., 22); > 0.

This shows that v is a fuzzy inner product.

Notation: The a-cut of ¢ is denoted by [¢]o = [, 1] =[Gy oy Das Gl ]
Theorem 5.7. In a fuzzy weak n-inner product space (X, (-,-|-,...,-)), for any
x,Y, Lo, ..., T, € X we have

[z, Y2, - 2D < V@ zlan, . 20 Ay, .., 20)5

Proof. Since (X/Y, %) is a fuzzy inner product space, therefore by Lemma 3.2 for
all z,5 € X/Y, we have

(@, 9)la = max(|¢™(2,9)], [ (2,9)]) < VP~ (2,2) @ V(5. 9)

T
& [z, y|zn, ..., 2)|L < \/(x,$|xn,...,x2); \/<y,y|$n,...,x2);.

Corollary 5.8. In a fuzzy weak n-inner product space

1Az ylon, o ze) 2 @, Y|z, - 2)| 2 (@, 2T, . 20) VY, Yl T, -, @),

2.z, y|Tn, .., 22y = (@, 2Ty 22) @ (WU Y|Tny -, x2) ONlY I Ty, T, Ty,
are linearly dependent.

S If (@, YT, -, x2) = (@, 2T, .. 22) /(Y Y|, - .. x2) 5, then vectors
T,Y, T2, ..., T, are linearly dependent.

Proof.

1. The inequality is a direct consequence of Lemma 2.6 and Theorem 5.7.

2. If z,y,29,...,x, are linearly dependent, then Z,y are linearly dependent,
which implies (%, 9) = /¥ (%,2) ® /1 (9,9), (using Corollary 3.3).
Thus (z, y|Tn, ..., 2) = (T, 2]@p, ..., 22) @ /(Y ylTn, ..., 22).

3. {z,yl@p, .y xa)d = (@ x| mn, . 2a) s (W Yl T, -, 2e); implies YT(E,9)
= /U~ (Z,2) ® \/1~(7,4), which shows that Z and ¢ are linearly dependent,
(using Corollary 3.4). Thus x,y, xa, ..., x, are linearly dependent.
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Remark 5.9. For a fuzzy weak n-inner product {-,-|-,...,-), using Theorem 5.7
and Lemma 2.2, we also have

(2, Y| Ty w2), <Ay y|Tn, .. w2)
< [, ylzn, .. wa)
< Nz, y|zn, ..., x|t
< \/<$a x|xn7 s ,$2>; \/(3/, ylxna s 7$2>¢;
<V, alen, o)t Vgl a2 (5.1)
If (X,(,],...,-)) be a fuzzy weak n-inner product space, n > 2, then we can
define a function || - [-,...,-| : X x X x ... x X — F(R) by
2] Zn, .oy 22| = 2, x| 20, . ., ) (5.2)

which satisfies the following conditions:

E1) ||z|2p, ..., 2] =0, |#| 2y, ..., 2| = 0 if and only if 2, zs, ..., z, are linearly
dependent;

E2) oY I | T A e B Y |

E3) x| = |7 @ |||z, -, 20| for all r € R;

Ed) ||z +y|lxn, ... x| 2 x|z, ... 22| @ |yl zn, - -, 22

E5) infacoa) ||@| 2, ..o wnlly > 0, if 2, 29,.. ., 2z, are linearly independent;

The conditions E1)-E5) follow immediately from the conditions D1)-D6).

Definition 5.10. A fuzzy real valued function || - |-, ..., | satisfying conditions
E1)-E5) is called a fuzzy weak n-norm and (X, || - |-, ...,||) is called a fuzzy weak

n-normed space.

Theorem 5.11.

If (X,(-,-)) be a fuzzy inner product space, then for .y, z,

T, ..., 0y € X, 7 €R and n > 3, the mapping (-,-|-, ..., ) : X x X x ... x X —

F(R) defined by

..,.1'2>* = <

n+1

(X, y| Tp1, o T2)e (X, 20| T,y o To)s (5.3)
$n>y|$n—1,~-,$2>* <$n,$n|$n_17...,l‘2>*
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satisfies conditions D1)-D5) and (-, -]+, ..., )« is a fuzzy weak n-inner product if
(v, 2|20, .., T0),, # 0.

Note that for n = 2, (z,y|x9). = (x,y|z2) as defined in Theorem 4.4, which is
a fuzzy weak 2-inner product. The mapping defined in (5.3) is called n-iterated
fuzzy 2-inner product.

Proof. We prove this proposition by mathematical induction, for n > 2. Clearly,
by Theorem 4.4 the result is true for n = 2.

Induction hypothesis: suppose S(n) : the n-iterated fuzzy 2-inner product defined
in (5.3) satisfies conditions D1)-D6). To prove that S(n + 1) : the (n + 1)-iterated
fuzzy 2-inner product also satisfies conditions D1)-D6). The (n + 1)-iterated fuzzy
2-inner product is given by

(X, y| Tn, . s T2)e (T, 1| Ty - o o) s
T, Y| T e o)y = 5.4
(@ ylonin, - ) (Tna 1, Y| Ty o+ T2) e {Tnat, Tyt | Ty -+, T2)s (5-4)
So by Remark 5.9, we get
_ (x, 2| Tp, ..., x2), (), Tpy1| Ty oo )T
T, x| T T = S S 0
(@, 2] g1, - 22), (Trgt, | Ty oo o) (Tt Tyt | Ty 2) 5 | T
(5.5)
and
r (x, Tpa1| Ty - o X2) 1
r.xlx T + — <I,I|l’n, 7‘7;2>*a y fn+1| Ln, » L2/ %q >0
< ’ ’ (e ’ 2>*a <£L'n+1,{L‘|£L'n,,,_,[E2>;a <l'n+1,l‘n+1|l'n7...,l'2>:; -
(5.6)
this shows that (2, 2| Zpy1,...,T2)s = 0.
If x,2,1,...,29 are linearly dependent, then by Corollary 5.8
(<ZE, xn+1| Ty ,J]2>*+a>2 = <I,.T| Ty ,I2>ja<xn+1, l‘n+1| Ty 7x2>>—k:
and
((x, Tpy1| n, - - - ,x2>:a)2 = (z, 2| Tn, ..., T2), (Tng1, Tng1| Tn, .., T2), -
Then by Remark 5.9
((x, Tpy1| Tn, - - - ,m2>*_a)2 = (r,z|xp,. .. ,x2>ja (Tna1, Tpat| Tn,y - - - ,x2>ja
and
(@, Tn| Tns - -, 22) T ) = (x| @y oo T2) o Tty Tt | Ty -+, T2) 1
This shows that (z,2|%pi1,...,22)f = 0 and (x,2|Zpq1,...,22),, = 0 and so

(T, Ty, ..., T0). = 0.
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Conversely,
(2,8 Tpg1s oo @2) = 0= (2, 2] Tpsr, . .., 2) =0
= (<$, In+1| Tns - - - 7I2>;&)2 = <.§L’,I" Tns - - - 7I2>ja<xn+17 xn—i—l’ Ty 7I2>*+a
= (<$7 anrll Ty ,.1'2):1)2 = <x,.’17’ Tpyeo- 7x2>*+a<xn+17 anrl’ Tpyeo- ax2>ja
(using Remark 5.9)
= X, Tpit,--., Ty are linearly dependent.
Condition D1) is completely proved for n + 1.
Since S(n) is true, so the condition D2) is true for n + 1.
Proof of condition D3) for n + 1:
(2, 2| Tp,y ..o T2)s (X, 1| Ty - -+ o) s
Ty X Ty 1y e oy To)w =
< ’ ’ b ’ 2>* <£L’n+1,ZL'|ZL'n,...,I2>* <I’n+1,$n+1lxn,...,fﬂ2>*
(Tpat, Tna1| Toy ooy T2) s (Tpa1, T Ty -+, T2)
= = (Tpi1, Tnt1| T, Tpy oo Ta) s
(T, Tpa1| Ty - o, To)s (x, 2| Tp,y ... L) (it Tna| 2, T, T2
Proof of condition D4) for n + 1:
(re,ylen, ..., x2)s  (TT,Tpi1| Tpy.ony Ta)s
TT Y| Togty .oy Ta)s i=
(r eyl Tntr, ., 2a)s (Toa 1, Y| Ty o+ T2) e AXnat, Tt | Ty - -+, T2)s
T @ (Y| Ty T T @ (T, Tpgr| Ty ooy T)u| -
= =7r ® (r,y|x e, T2)
(T 1, Y| Ty - T2)e (Tpg1, Togt| Ty - -+, o) s (@l Tng, - 22)s
Proof of condition D5) for n+1:
(x+ 2"y Tpsty - xo)s =@+ 2y Ty T2) e @ (Tpat, Tt | Ty - -, T2
O+ x| Tny 12 @ (T 1, Y| Ty -+ o)

:((x,y| Ty ooy X2)s @ (Tpa1y Toat| Ty oo To)s
O, Tpa1| Ty oo T2) s @ (Tpi1, Y| Ty - - ,x2>*)
o ((x', Y| Ty T2) s @ {Tpi1, Tt Ty - - -5 T2

S <33/, xn-i—l’ Tpyeo- ,Z’2>* ® <xn+la y’ Tpyen- ,l‘2>*)
:<l’,y| Tp+1,--- ,l'2>* D <.CL'/, y’ Tp+1,--- 7x2>*-

Example 5.12. Define (z,y)(t) = { (1)’ Zﬁiﬁv&; (. y);
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where (-,-) defines the usual inner product and (x,z) > 0. Then [(z,y)], =
[(z,y), (z,y)]. It can be verified that (-, -) is a fuzzy number and a fuzzy inner prod-
uct. Let (+,-) : R® x R® — R be the usual inner product and (-, |-, ), : R® x R3 x
R? x R?* — F(R) be the 3-iterated fuzzy 2-inner product with (-,+|-,-);. # 0. Then
by Theorem 5.11, (-, |-, ). is a fuzzy weak 3-inner product. But it is not a fuzzy 3-
inner product because there exist vectors for which (x, x| x3, x2). # (xa, x2| 23, ).
For this choose vectors = = (1,0,0), 2o = (2,1,2), 23 = (1,1,1). As defined in
equation (5.3),

(x,x|T2)e (T, 23] T2)s
<$3,.T’x2>* <I‘3,.§C3|x2>*

= ((w, 2| 22) s ® (23, 73| T2)+

<.ZU, I| xs, [L'2>*

O ((z, x3] xa)s @ (23, x| T2)x).

_ [z, (z,xe)d (x,z) (z, :UQ) 1 2
Now, (z, | 22),, = (T, )T (wo,wa),|  |(wa, ) (mg,xg 2 9 =9
| (xx)t (xyxe), | | (xx) (7, 72) 1
and (z, 7| 22)7, T Nao, 2y (o, )| T (w0, 2) (22, 22) ‘2 ‘
So [(x, x| x2)«]a = [D,5]. Similarly, we can find out [(x3, x3| X2)i]a =
[(z, 23] 2)i]a = [—1, —1] = [{x3, 2| X2)+]o. Therefore,
[(z, 2| 23, 22)4]a = ([5,5] ® [2,2]) © ([-1, -1 ® [-1, —1]) = [9,9].
Now,
_ (@2 @] @)y (T2, 23] @)
2o 22l 23,2 = iy o) (sl ).
and [(z2, z2| 2).]a = [5,5], [(x3, 23| 2)<]a = [2,2], [(z2, z3]| 2)s]a = [3,3] = [{z3, 22| 2)s]a-
So [(z2, x| 3, 2)4]a = [1, 1].

6. Conclusion

We substantiated the existence of a fuzzy 2-inner product through an illustrative
example and constructed an n-iterated fuzzy 2-inner product, demonstrating its
characterization as a fuzzy weak n-inner product. Furthermore, we provided an
example illustrating a 3-iterated fuzzy 2-inner product that does not conform to
the properties of a fuzzy 3-inner product.

7. Future scope

The structure of the standard fuzzy n-inner product remains an unexplored
aspect. Once the structure of the standard fuzzy n-inner product is established,
one can delve into the study of representing the n-iterated fuzzy 2-inner product
in terms of the standard fuzzy k-inner product, (k < n).
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